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Any mathematical formalization of scientific activity allows for imperfections in 
the methodology that is formalized. These can be of three types, "dirty," "rotten," 
and "dammed." Restricting mathematical attention to those methods that cannot 
be construed to be imperfect drastically reduces the class of objects that must 
be analyzed, and relates all other objects to these more regular ones. Examples 
are drawn from empirical logic. 

1. I N T R O D U C T I O N  

Noth ing  is perfect .  Few contes t  this,  yet  most  reach  for  pe r fec t ion  by  
t ry ing harder .  In  scientif ic inves t igat ions  this s i tua t ion  manifes ts  i tself  on 
the  one h a n d  by  a never -end ing  effort to achieve more  precise  and  c lear-cut  
obse rva t ions  and  exper iments ,  and  on the o ther  hand  by  using ever more  
d e v e l o p e d  analyses  o f  errors.  On top  o f  this,  the  theoris ts ,  hop ing  for  abs t rac t  
per fec t ion ,  in t roduce  idea l iza t ions ,  achieving  in this way,  they  bel ieve,  
abs t rac t  objects  more  m a n a g e a b l e  than  wou ld  be  the  case i f  one kep t  c loser  
to ac tual  scientif ic activity.  The pas t  ha l f  century  has seen a deve lopment ,  
unde r  var ious  schools  o f  thought ,  of  a ma thema t i ca l  me ta theo ry  o f  science:  
fo rmal i za t ions  and  idea l iza t ions  of  scientif ic act ivi ty  itself. This has been  
great ly  mo t iva t ed  by a desire  to come to terms with q u a n t u m  mechanics .  
By a fo rma l i za t ion  o f  science we mean  any ma thema t i ca l  scheme that  
descr ibes  acts o f  obse rva t ion ,  and  by  specif icat ion,  the more  res t r ic ted acts 
o f  expe r imen ta t ion .  The  whole  of  stat ist ics and  a respec tab le  po r t i on  o f  
q u a n t u m  mechan ics  exempl i fy  such concerns .  The recent  more  sys temat ic  
fo rmal iza t ions  try to give these concerns  a sol id  ma thema t i ca l  and  phi lo-  
sophica l  foot ing.  The in tent  o f  course is somehow  to cap ture  the essence 
o f  leg i t imate  and  effective scientif ic p rocedure s  with as many  a priori 

assumpt ions  la id  bare  as possible .  
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In this effort, though, two things get overlooked. Once one has a general 
enough formalism, then along with scientific activity, the formalism admits 
as examples activities that are far from scientific. Divinatory procedures 
from cartomancy to astrology have strong formal resemblance to scientific 
activity. Even arbitrary acts that mimic science without any relation to a 
field of  phenomena are subsumed in such formalisms. One thing that 
distinguishes these activities from truly scientific ones is the second fact 
that is overlooked in the formalizations: the constant effort of  any science 
to disprove itself. It is an essential part  of any science to try to find alternative 
explanations for each experiment and observation. I f  some experimenter 
is lax in this, then his or her colleagues certainly will not be. Only when 
no alternative within the currently accepted schemes is at hand is the result 
accept~l  for the moment.  This attitude and activity is not usually included 
in the formalism. What is essential to include such concerns is the notion 
of imperfection. Imperfection in scientific methodology takes many forms: 
our apparatus and methods are imperfect, our data analysis is imperfect, 
the state of  affairs we study is imperfectly prepared or identified, and our 
knowledge, both empirical and theoretical, is imperfect. Even more 
seriously, our approach to any phenomenal  field may be inappropriate to 
it, yielding irrelevant and useless data, or, at best, data highly contaminated 
by our prejudices and ignorance. Given now a formalization of science, 
these facts must somehow be expressed and analyzed and conclusions drawn 
from them. In this paper  we point out ways that this can be done, drawing 
mostly for examples on what may be grossly labeled "quantum logic." We 
have only a modicum of hard results. The purpose of this paper  is more to 
call attention to these problems and to indicate what one may accomplish 
by their study. The actual mathematical analysis proposes a set of  difficult 
questions to which only very partial answers are now known. We keep the 
exposition informal, placing all the mathematical  technicalities in an Appen- 
dix. A familiarity with the author 's  works (Svetlichny, 1981, 1982), is useful, 
but not essential. 

2. I M P E R F E C T I O N  AS ADULTERATION OF DATA 

As scientists we believe there is something to be scientific about, that 
we can know something about it, and that we do  have effective methods 
for obtaining this knowledge. Thus, even to begin we must make a metaphy- 
sical assumption that these three aspects make sense: object, knowledge, 
and method. In relation to the method, we distinguish what we can call the 
laboratory attitude from the field attitude. In the laboratory attitude one 
assumes that the methods are sufficiently refined that one can contemplate 
a series of  well-defined acts that lead to one out of  a previously defined set 
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of outcomes. In making a voltage measurement  in the laboratory one takes 
the voltmeter reading as the results of  the experiment, and ignores the cat 
fight outside as being just part  of  the irrelevant background. The field 
attitude is less restrictive, having no a priori set of  possible results from 
which to choose; one simply notes down what seems significant, deciding 
on what is relevant by more lax criteria. This is an indispensable approach 
to science, but it is not yet well formalized, and here we shall only treat 
the laboratory attitude. 

The general thesis we want to make explicit here is the following: once 
one has a specific formalization of the above three aspects, making it a 
model of  scientific activity, then one has committed oneself to the existence 
of some specific type of primitive object. Once these objects must be admitted 
as existing in the world, they ca,", v . . . .  k,~ m ,Le L,~mOuOJogy, become 
imbedded so to speak in the method, and take part  in the production of 
data. The data will then not only reflect information about some object of  
study, but also incorporate adulterating contributions from the imbedded 
primitive objects. This leads to imperfections in the method, which we must 
try to minimize. Of  course, one cannot by purely formal criteria prove that 
a method is flawed in such a manner,  but it is quite fortunate that one can 
establish criteria for when a method may be so flawed, and by exclusion, 
criteria for when the method is certainly not so flawed. This then separates 
from a plethora of  possible mathematical  objects a small subset of  those 
that may be called flawless, and which we believe must constitute the primary 
focus of  mathematical  investigation. 

We shall show that there are three ways that a method m a y b e  thought 
to be imperfect. These could be vulgarly labeled as "dirty," "rot ten,"  and 
"damned ."  The first type obtains whenever a method can be interpreted as 
the result of  using a different method and then subjecting the results to an 
information-adulterating processing. The second type obtains whenever a 
method can be interpreted as composed of component  methods in an 
information-adulterating way. The third type obtains whenever the given 
method is flawless in the first two senses, but the formalism allows for 
conceivable but nonexistent methods in terms of which the given method 
can now be construed as flawed. It is as though Nature were cheating us 
of  a better view, restricting our abilities in a way not directly explicable by 
the formalism. 

3. PROBABILISTIC E M P I R I C A L  AND QUANTUM LOGICS  

In the laboratory attitude, each method when executed yields one out 
of  a predefined set of  outcomes. Identify such a method E with its set of  
outcomes: = {a, b, . . .} .  A collection of methods is thus given by a set of  
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sets 92 and is called a quasimanual. Each E e 92 is called an operation. A 
subset A c E of an operation is called an event. Empirical logic is the study 
of quasimanuals, their properties, and interpretations (Foulis and Randall, 
1978, 1981; Randall and Foulis, 1978). The probabilistic interpretation of 
quasimanuals assumes that given an ontological state of affairs and an 
operation E, the execution of E leads to some outcome x e E with a certain 
probability w(x), usually considered as an asymptotic frequency. When x 
belongs to several operations, this probability is assumed to be independent 
of the operation that is executed. In a probabilistic view of scientific 
prediction, this equality in all ontological states is usually taken to be a 
necessary (though not alway sufficient) condition for outcome identification 
of different operations. One thus defines a map w from the outcome set to 
[0, 1] such that for all E e 92 one has Y~xcz w(x) = 1. Such maps are called 
weights. 

A quantum logic, which is an orthomodular poset L, falls into this 
scheme. Let 92 be the set of finite orthopartitions of unity; that is, finite subset 
of mutually orthogonal elements whose supremum is 1. Weights are now 
finitely additive probability measures on L. One knows that L can be 
recovered from 92 in this case. 

One must note now that having assumed a probabilistic interpretation, 
for it to be useful one must admit the existence of stochastic processes in 
the world. One must also admit that the notion of a series of independent 
experiments makes sense. Even if the phenomena one studies are not to be 
considered independent, for any sampling to be treatable, the statistician 
must have at hand a process whose repetition can be considered as indepen- 
dent. One must thus posit as existing in the world a primitive object acting 
as a stochastic process, the repeated executions of which are to be considered 
as independent. Given one such, then by mathematical transformations of 
the outcomes of  runs of executions of  the process, any other one can be 
modeled to any degree of  accuracy. There is therefore no loss of generality 
to assume that we have access to finite random variables with values in any 
given finite set and with any given corresponding probability measure. We 
assume that independent invocations of these processes are possible, and 
that the result of each invocation is independent of  anything else of relevance 
in the given circumstances. Such processes we call stochastic splitters and 
we can construe them as operations that can be added to any quasimanual. 
Given that the existence of  stochastic splitters is a necessary admission of 
any probabilistic view of scientific methodology, these splitters, according 
to our thesis, can become imbedded in the methods to adulterate data. The 
existence of  splitters has further consequences. Consider one with outcomes 
{1, 2} and outcome probabilities h and 1 - h .  Suppose the ontological states 
of affairs one studies can in fact be prepared at will, and consider two such 
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$1 and 82 giving rise to weights w~ and w 2 . A new state preparat ion procedure 
is now given by the following prescription: invoke the splitter; if the result 
is i, prepare the state Si. This new procedure leads to weight Awl + (1 - A) WE, 
and so the set W of  weights corresponding to preparat ion procedures can 
be taken to be convex. We shall always assume this in the sequel. 

4. FREQUENCY FUNCTIONALS AND INSTRUMENTAL 
T H E O R I E S  

Let W be a convex set. An affine functional f :  W o  [0, 1] we call a 
frequency functional I f  one considers that W somehow embodies a set of  
ontological states of  affairs, and if E is some laboratory operation with 
outcomes a, b , . . . ,  then the frequency of occurrence of each of these out- 
comes defines a frequency functional on W and one has a family (fx)x~E 
of frequency functionals. Similarly, if A is an event, then fa = ~xca  fx is a 
frequency functional corresponding to the event. Such a narrowing of 
attention to frequency functionals discards a lot of  information, yet the 
simple arrangement of  a convex set with a set of  sets of  frequency functionals 
lends itself to many significant mathematical  results. The fundamental  
questions, however, even in such a simplified scheme, pose interesting 
challenges. 

Formally one thus considers systems T = (W, (O,)  n=2,3,...)), where W 
is a convex set, which we call the set of states, and for each n --- 2, On is a 
convex set of  n-tuples of  frequency functionals whose components sum to 
1. Each w c  W is to be interpreted as corresponding to a preparat ion 
procedure of  some ontological state of  affairs, and each ( f l , . . . ,  fn) ~ On, 
called an instrument, as the family of  frequency functionals corresponding 
to some operation with its outcomes ordered in some given manner.  

One can justify the convexity of O, by being able to condition the 
choice of  an operation on the outcome of a stochastic splitter. A stochastic 
splitter with outcome probabilities hi ,  . .  �9 An has a representation in O, as 
( A l l , . . . ,  AnD, where 1 is the constant frequency functional. Elements of  
02 are of  the form (f, 1 - f )  and the set of  f appearing in such pairs is a 
convex set, which we shall designate by O. One has On c O n. We shall 
always assume in the sequel that O separates points of W. We further 
assume that if ( f ~ , . . . , f n ) c  On and if one partitions { 1 , . . . ,  n} into m 
subsets Q 1 , . . . ,  Qm (some of which may be empty) and set gi = Y~ {f~lJ ~ Qi}, 
then ( g ~ , . . . ,  g,,) ~ O,~. We call this process coarsening and also say that 
( f l , . . . ,  f ,)  refines (g~,. . . ,  gin). That ( g l , . . . ,  gin) can be construed as 
corresponding to an operation can be seen by the following prescription. 
Let E = {el, �9 �9 �9 en} be an operation with frequency functionals ( f l ,  �9 �9  fn). 
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If  upon executing E the result is e; with i ~ Qj, consider the number j as 
the outcome of  a new operation. This new operation obviously has frequency 
functionals ( g l , . . . ,  gin). The structure here is what in Svetlichy (1981) we 
call an instrumental theory. Such a structure can be attached to any 
quasimanual 92: Let W be any convex subset of f~(92), the set of all weights 
on 92. Let O, be the convex hull of n-tuples of the form (fAl,... ,  fa , ) ,  
where ( A ~ , . . . ,  A,)  are n-element partitions into not necessarily nonempty 
events of  operations E of 9/. Such a theory in which one chooses W = f~(92) 
we call the canonical instrumental theory associated to 9/. 

Mielnik (1968, 1974) introduced a formalism that has as the starting 
point a convex set W to be considered as representing the set of ontological 
states under a probabilistic interpretation. Mielnik assumes that any 
frequency functional corresponds to some yes-no observation procedure. 
An even stronger claim would be to consider that each n4uple of frequency 
functionals ( f a , . . . , f , )  whose sum is 1 corresponds to an executable 
operation. This may sound extravagant, since why should Nature allow 
access to any such n-tuple? Yet, as we shall see, these theories are central 
to the study of general ones. A theory (W, (On)n=2,3...)) constructed in this 
manner we shall call the canonical theory associated to W. 

5. THE DIRTY AND THE ROTTEN 

Let T = ( W, (On)n=2.3,..)) be an instrumental theory. We say an instru- 
ment J = (gl, �9 �9 �9 gin) is stochasticallyfactorizable (Svetlichny, 1982) if~here 
is an instrument ! = ( f l , . . . ,  fn) and a nontrivial stochastic matrix P(J,, i), 
i = l , . . . , n , j = l , . . . , m  [O<-P(j,i)<-l; E j P ( s  O < P ( a , b ) < l  for 
some a, hi, such that gj = ~ i  P( i , j ) f .  By Svetlichny (1982) such constructs 
are allowed once one admits the existence of  stochastic splitters. One can 
now view J as being I followed by an information-adulterating stochastic 
process. This is an example of  a "dirty" instrument. One has from Lemma 
1 of Svetlichny (1982) that J is stochastically factorizable if and only if 
there is an h ~ O and a pair of  elements, (say gl, g2 after renumbering) of 
J such that 

( g l - h / 2 ,  h, g2 -h /2 ,  g3, . . . , gm)E Om§ 

Consider now the canonical theory associated to some convex set W. In 
this case (f, 1 - f )  ~ 02 is stochastically factorizable if and only if there is 
an h ~ O such that ( f - h ~ 2 ,  h, 1 - f - h / 2 ) c  03. This, however, holds if and 
only if f -  h/2 and 1 - f -  h/2 are both in O, which is true if and only if 
both f +  h/2 are in O. Thus, (f, 1 - f )  is stochastically factorizable if and 
only i f f  can be displaced in either direction by an element of O while still 
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remaining in O. For the case in which W is a square [0, 1] 2, O has the 
geometric form given by Figure 1, where we label each extreme point by 
the corresponding frequency functional. 

Here, for ( x , y ) c [ 0 ,  1] 2, f l ( x , y ) = x ,  f 2 ( x , y ) = y ,  f 3 ( x , y ) = l - - x ,  and 
f4(x, y) = 1 - y .  One now sees from the above criterion that the set o f f  such 
that (f, 1 - f )  is "clean," that is, not stochastically factorizable, consists of  
the boundary of the square spanned by the four frequency functionals f .  
Several comments can be made concerning this. 

In the first place, convex polytopes for W correspond to situations that 
are essentially finite, since only a finite number  of  linear constraints are 
necessary to define W. One should then expect from any criterion for 
flawlessness to obtain only a finite number  of  objects. Thus, lack of  stochastic 
factorizability cannot be considered as the correct notion of perfection. One 
notes that among the clean instruments one has all the extreme points. 
Svetlichy (1982) argues that it is the extreme ones that must be considered 
as not containing information-adulterating stochastic elements. In fact if 
the instument ! is not extreme, then one can write it as I 1 = 5Ia + 512 and its 
operation can be construed as first invoking a splitter and on the basis of  
the result operating either with 11 or 12. Thus, I can be viewed as compound 
with an embedded stochastic element. This added element introduces extra 
complexity in successive observed outcomes as compared to the mean of 
the complexities corresponding to the two component  instruments 
(Svetlichny 1982). Nonextreme instruments thus correspond to the type of 
imperfection that we call "rotten." 

For the canonical theories of  convex polytopes one has only a finite 
number  of  extreme points in O,, and this is in accord with our intuition. 
What is even more in accord with our intuition is that in this case there is 
a number  no such that for n > no each extreme point of  O, has at least 
n -  no zero functionals (Theorem 1, Appendix).  Thus, there is essentially 
only a finite number  of  extreme instruments. One has from Svetlichny (1982) 
Lemma 6, that no two nonzero functionals in an extreme instrument are 

0 1 

Fig. 1. Frequency functionals on the square. 
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equal, and so by considering the sets { f l , . . . ,  f ,}  of  nonzero frequency 
functionals corresponding to extreme instruments ( f l ,  �9 �9 �9 f , ) ,  and ignoring 
for convenience the singleton {1}, one has a quasimanual ?ieX(T), which 
we call the extreme instrument quasimanual of T. 

Having this new quasimanual,  one can consider the new set of  weights 
W'= l I (~eX(T) ) .  One has a natural inclusion W ~  W', yet W' could be 
bigger. Whenever W ' =  W one says the theory is state complete. Elements 
of  W ' \  W can be interpreted as conceivable states allowed by the theory 
but which for some reason do not exist in actuality or are not accessible to 
the experimenter, or are for some ad hoc reason being ignored. Each f of  
an extreme instrument I = ( f ~ , . . . ,  fn) can be interpreted as a frequency 
functional f~ on W', so the convex span of the I ' =  ( f ~ , . . . ,  f ' )  will form 

p 0 t a new instrument set O'n. The system T' = ( W ,  ( n),=2,3,...)) forms a new 
theory, which we call the state completion of  T. One has T " =  T'  (Theorem 
2, Appendix).  State-incomplete theories can be thought of  as being carved 
out of  state-complete ones by restriction on state production (Svetlichny, 
1981, Definition 32). In the process, extreme instruments may by statistical 
coincidence become no longer extreme. 

To illustrate these points, consider the case where W =  [0, 1] and in 
which the On are to be defined as the smallest sets consistent with the 
existence of  ( f l ,  f2, f3) as an extreme instrument, where f l ( x )  = 1/2, f2(x) = 
x/2 ,  and f 3 ( x ) =  1 / 2 - x / 2 .  One has that (f~, f z + f 3 ) =  (1/2, 1/2) is a non- 
extreme coarsening of an extreme instrument. This suggests that there is 
some sort of  imperfection in the original instrument. One finds in fact that 
91 ~x is a tr ichotomy with two of its coarsenings, and thus W' is a triangle 
with the original set W imbedded as shown in Figure 2. 

T h e f  can now be considered as the restrictions of  the three barycentric 
coordinates of  the triangle, In relation to the triangle, of  course, all the 
coarsenings of  the instrument given by the three barycentric coordinates 
are extreme. One may hope therefore that by passing to state completions 
one would achieve a situation in which each extreme operation can be 
considered as flawless. This, however, is not the case. 

Fig. 2. 
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6. IMPERFECT COARSENINGS AND THE DAMNED 

An extreme instrument with a nonextreme coarsening is prima facie a 
curious situation. Let I = ( f i , . . . ,  fn) be an instrument representing some 
operation E = { e l , . . .  , en}  and Pi the proposition that affirms that the ith 
outcome ei is realized. Introduce now a partition A ~ , . . . ,  An of { 1 , . . . ,  n} 
and the operation D = { d l , . . . ,  dn}, where dj occurs if and only if, upon 
executing E, event ,42 occurs. Now D has frequency functionals 
(fA~,. �9 �9 fAn), which constitute an instrument J that is a coarsening of I. 
The proposition Qj that affirms that dj occurs is equivalent to ~/~Aj P~, 
which is a purely logical construct. How can purely logical constructs on 
outcomes of  an experiment that cannot be interpreted as possessing imbed- 
ded stochastic elements lead to one that can be so interpreted? The answer 
that our last example proposed is that the theory may be state incomplete, 
and so just by pure statistical coincidence in a reduced situation, an extreme 
instrument is identified with one that is not. However, our situation can 
occur even in a state-complete theory. To see this, consider the quasimanual 

= {{a, b, x}, {c, d, x}, {a, b, c, d}} 

which we call the "fly" and which can be diagrammed as in Figure 3. 
One readily shows that for any weight w one has w(x) = 1/2, so that 

w ( a ) + w ( b ) = l / 2 =  w ( c ) + w ( d )  and thus I~(9/) is essentially the square 
[0, 1/2] 2 defined, say, by the pairs (w(a),  w(c)). The set O is spanned by 
the frequency functionals of events, in which one easily finds that fa, fb, fi ,  
and fd are extreme points. Since each initial instrument has at most one 
nonextreme outcome, it is extreme. Each On is the span of  elements of  the 
form ( fA1 , . . . ,  fA,,), where A 1 , . . . ,  An is a partition of some operation. 
Thus, the extreme instruments must be among these elements. One then 
readily finds that starting from initial instruments, the other extreme ones 
can be reached by successive coarsenings involving at each step only two 
outcomes. Thus w ~ W' is uniquely determined by its restriction to the initial 

j 

Fig. 3. The fly. 
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instruments and so the theory is state complete. One has, however, that 
(fa +fb, fx) = (1/2, 1/2) is a nonextreme coarsening of an extreme instru- 
ment. In this case an explanation of the phenomenon can be seen in noting 
that since the state space is the square, one can imbed the On into the 
corresponding sets of the canonical theory of the square. One then finds 
that the initial instruments of the fly, though extreme in the canonical theory 
of the fly, are not extreme in the canonical theory of the square. 

The initial instruments are thus flawed, but in relation to presumably 
unattainable procedures, admitted, however, by the mathematical descrip- 
tion. This is an example of a type of imperfection that we have labeled the 
"damned."  One can appreciate this more concretely by the following con- 
struction: Take W = [0, 1] 2 and define f, g by f (u ,  v) = u and g(u, v) = v. 
Thus, (f, l - f )  and (g, l - g )  are two extreme dichotomic instruments. 
Consider now the compound operation diagrammed in Figure 4. This 
involves a stochastic splitter Z with equal probabilities followed by either 
the first or the second dichotomy. Identify this with the instrument 
(fa, fb, fc, fd) of the fly and the instruments (fo, fb, fx) and (f~, fd, f~) with 
the obvious coarsenings. We have thus reproduced the instrumental theory 
of the fly as a compound theory. One must now envisage that the instrument 
(fa, fb, fc, fd) is accessible to the experimenter, but Nature somehow con- 
spires to make it impossible to construct (f, l - f )  and (g, l - g )  as self- 
subsisting procedures in their own right. These can only exist bound within 
the construct. One can readily understand now why a coarsening of an 
extreme instrument can be nonextreme, for (fa +fb, f~ d-fd) does nothing 
else but expose the hidden stochastic splitter in the compound instrument. 
We thus conjecture that whenever a state-complete theory has nonextreme 
coarsenings of extreme instruments, it incorporates hidden stochastic split- 
ters, that is, some extreme instrument is nonextreme in the corresponding 
canonical theory associated to the state space. A precise mathematical 
problem based on this idea is the following: 

Conjecture. Let W be a compact, finite-dimensional, convex set, and 
let 9~ ex be the extreme instrument quasimanual of  the corresponding canoni- 

Fig. 4. 
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cal theory. I f  I~(9~ ex) = W, then for each event A of 91 ex, the frequency 
functional fA is an extreme point of  O. 

Unfortunately, we have been unable to settle this conjecture even in 
the case of  convex polytopes. I f  false, it would mean that a state-complete 
canonical theory of some convex set would have an extreme instrument 
with a nonextreme coarsening. This would be inexplicable in terms of the 
instruments being nonextreme in a more encompassing theory, since such 
canonical theories are in a natural sense maximal. This would signal the 
existence of  a more insidious imperfection than the one we have labeled 
as "damned , "  and we conjecture that it does not exist. 

7. T H E  I M P O R T A N C E  OF CANONICAL T H E O R I E S  

Suppose we have some phenomena  that are well described by an 
instrumental theory T =  (W, (O.).=2,3,...)). Imagine now an experimenter S 
hired to supply data concerning the phenomena.  Due to personal tastes, S 
refuses to prepare and observe certain states, thus effectively looking only 
at a subset Ws c W. Likewise, S refuses to work with certain instruments, 
and so effectively only works with subsets O s c O, of  the instrument sets. 
Thus, in presenting the results for analysis, one has effectively only the 
fragment Ts = ( Ws, ( 0  s ) .  :2,3,...) instead of T. The various schools of  for- 
malization of  scientific methodology all claim to have tools to analyze and 
describe Ts, but why should one want to ? 

Now, Ts lies within T and if not too different (for example, if Ws and 
W have the same dimension) cannot be a state-complete canonical theory. 
State-complete canonical theories cannot be interpreted as being achieved 
just by an ad hoe reduction by some unscrupulous experimenter. All other 
theories are contained within these, and though one cannot formally prove 
that any such does result f rom an ad hoe reduction, it could so result. This 
is sufficient reason to relegate such theories to secondary mathematical  
analysis and to concentrate on the state-complete canonical ones. A 
classification of these is thus of  greatest importance. This is a very difficult 
problem, for which only the following result is known: the canonical theory 
associated to a finite Cartesian product of  simplexes is state complete 
(Theorem 3, Appendix).  

8. T H E  QUALITATIVE INTER P R ETATION  OF QUASIMANUALS 

As further illustrations of  our ideas, we apply them to the qualitative 
interpretation of quasimanuals due to Foulis et al. (1983). Given a 
quasimanual  and an ontological state S, let us list for each operation E the 
results that are possible in that state. The set of  all such outcomes taken 
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for all operations thus defines a subset P of the outcome set. We now make 
a minimal realist assumption. We say that an event A of  an operation E is 
S-certain in E if P n E c A. Assume now that the S-certainty of an event 
is independent of the operation in which the event may lie. Suppose now 
that for two operations E and F one has P n E = F;  then P n E is S-certain 
in E and hence by our assumption is S-certain in F;  thus F \  (P  n E ) consists 
of  impossible outcomes and one concludes that P n F c E. One thus deduces 
the exchange condition: 

P n E c F ~ P n F c E  

Such subsets P satisfying the exchange condition are called supports. For 
this set of  ideas to be coherent, one must admit a degree of ontological 
uncertainty in the world. Thus, if P is a minimal support and P n E is not 
a singleton, then the choice of one or another outcome in the set P n E is 
to be supposed to be totally without cause and constitute an irreducible 
ontological indeterminism. We must thus postulate the existence ofuncaused 
acts isolated from the rest of  the world, somewhat similarly to the stochastic 
processes needed to make sense of probabilistic theories. Let us call such 
isolated indeterminate processes whimsies. Imagine a whimsy thus as being 
a sort of box with n lights and a button. Pushing the bottom makes one of 
the lights blink, but the choice of  which light blinks is to be construed as 
being ontologically indeterminate and independent of anything else in the 
world. As for stochastic processes having one such whimsy, by mathematical 
processing of  the results of  a run of invocations, one can produce a whimsy 
with any finite number of  outcomes. We shall diagram a whimsy as in Figure 
5. Of course one does not necessarily assume the existence of a probability 
measure associated to the outcomes. 

By our thesis, we must now assume that whimsies can become imbedded 
in experimental procedures and adulterate the pattern of  outcomes, giving 
rise again to the three types of imperfections. To be able to provide concrete 
examples, we need an analog of an instrumeiatal theory of the probabilistic 
interpretation. One supposes that one has a certain number of  primary 

tri.9~Jer 

otL4~comes 
Fig. 5. The whimsy. 
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Fig. 6. 

ontological states and that at any moment one of  these is in fact realized. 
These primary states thus define a set E of  supports of any quasimanual 9~ 
that is presumably used to study them. A pair (9~, E) of quasimanual and 
a set of supports whose union is the set of all outcomes is called an entity 
and this is the construct we shall look at. 

Consider now the entity given by 

9~ = {{a, b}, {b, c, d}} 

= {{a, c, d}, {b}} 

which can be conveniently diagrammed as in Figure 6. 
A little bit of  thought makes us realize that one can view this as follows: 

there are two ontological states, separated by the single dichotomic operation 
{a, b}; the operation {b, c, d} can then be interpreted via the construct of 
Figure 7. Here the difference in the outcomes c and d does not reflect any 
difference in the ontological state, but merely the functioning of  the whimsy. 
This in fact provides us with an example of a dirty operation. 

As the next example, consider the entity 

9~ = {{u, v}, {y, z}, {a, b, c, d}} 

E = {{u, y, a, c}, {u, z, a, d}, {v, y, b, c}, {v, z, b, d}} 

Again, some reflection shows that we can interpret this as dealing with four 
ontological states completely separated by the two dichotomies D1 = {u, v} 
and D2 = {y, z} and in which {a, b, r d} has the construct of  Figure 8. This 

Fig. 7. 
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Fig. 8. 

is an example of a rotten operation; it cannot be dirty, since a dirty one 
has to be one or the other of the dichotomies followed by an array of 
whimsies, and these types cannot distinguish all four ontological states, 
while this construct can. 

As a final example, consider the entity given by the minimal supports 
of the fly (Figure 9). One can view this in terms of  the previous construct 
by identifying the operations labeled as {a, b, c, d}, and operations {a, b, x} 
and {c, d, x} with two coarsenings. One must motivate, though, the iden- 
tification of  the outcome that coarsens {a, b} with the one that coarsens 
{c, d}. In the qualitative interpretation, with its minimal realist assumption, 
outcome identification can be motivated if the respective occurrences furnish 
equivalent information about the ontological states. In our case, coarsened 
{a, b} and coarsened {c, d} both offer n o  information, since they simply 
signal a whimsy outcome. Thus, identification is justified, and we have 
succeeded in interpreting the fly entity as a damned theory, since the 
underlying dichotomies are unavailable to the experimenter, who has only 
the fly as the quasimanual. 

J 

Fig. 9. 
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9. C O N C L U S I O N  

Our aim has been to motivate a mathematical  focusing of attention. 
Existing formalisms provide us with an overabundance of objects. Most of  
these objects, however, when interpreted as formalized methodology, con- 
tain methods interpretable as flawed, and these flaws can be of three types. 
Mathematical attention should shift to those that are not flawed. In prob- 
abilistic quasimanual theory this means identifying those quasimanuals that 
are of  the form 9~ex(T) for a state-complete canonical theory on some convex 
set of  states. A similar identification of the central problem can be achieved 
in any other situation once the notions o f "d i r ty , "  "rotten," and "damned"  
become explicitly and precisely fo rmula ted . .Such  a program means that 
one first looks at those "flawless" theories that presuppose that neither 
Nature nor our scientists are cheating us, that our methods cannot in 
principle see more than they do, and that the ontological states of  affairs 
in principle are not capable of  greater determination than that furnished 
by o u r  methods. Such theories furnish a f ramework relative to which all 
others, incorporating limitations either real ( imposed by Nature) or ad hoc 
(imposed by people),  can be analyzed. 

Perhaps nowhere is the burden of an overabundance of possible objects 
so apparent  as in the great axiomatic effort of  Ludwig (1983) to lay the 
foundations of  Hilbert-space quantum mechanics. Roughly 40 axioms are 
needed to separate quantum mechanics from the general situation. A more 
satisfying result would be to relate quantum mechanics to its encompassing 
flawless theory (if it is not already flawless) and to identify axiomatically 
this latter among all such. The same of course applies for any science. 

APPENDIX.  M A T H E M A T I C A L  DETAILS 

Theorem 1. Let W be a finite-dimensional convex polytope; then there 
is a number  no such that any extreme instrument has at most no nonzero 
elements. 

Before giving the proof,  we need a few definitions and lemmas which 
are useful in their own right. Let W* be the (vector) space o f  affine functions 
W~+ R. Given S c  W eX, we say that S is stiff if and only if the only  affine 
function that vanishes on S is the zero function. Given f ~ O, we define 

Z ( f )  = W eX ~ f - ' ( O )  

U ( f )  = wexr~ff l (1)  

N ( f )  = Z ( f )  u U ( f )  

L e m m a  1. f ~ OeXCz> N ( f )  is stiff. 
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Proof. One has that f is not extreme if and only if it lies on a segment 
within O, which means that there is an element h ~ 0 of W* such that 
f +  thc  0 for t e [ -1 ,  1]. This can only happen if and only if there is a 
nonzero affine function vanishing on N ( f ) .  �9 

Lemma 2. I = ( f j , . . . ,  fn) is an extreme instrument if and only if those 
linear subspaces V~={hc W*lhlN( f i )=O } that are not {0} are linearly 
independent. 

Proof. I is not extreme if and only if it lies on a segment within On, 
which means that there is a nonzero n-tuple H = ( h i ,  . . . ,  h n )  in W *n such 
that Y.i h i = 0  (since elements of instruments sum to 1) and such that 
I + tH ~ On for t c [ -1 ,  1]. Clearly, hi restricted to N(f~) must be zero. �9 

Proof o f  Theorem 1. Given an extreme instrument I = (f~ . . . .  , fn), one 
has from Lemma 1 that V~ = {0} if and only if f is extreme. Since there is 
only a finite number of extreme points of O and W* is finite-dimensional, 
the result now follows from Lemma 2. �9 

Theorem 2. For any instrumental theory T one has T"= T'. 

Proof. The instruments of T' are convex combinations of instruments 
I ' ,  where I is extreme in T. Now each such I '  is extreme in T', for if it 
were a convex combination of  others, the same convex relation would a 
fortiori hold when restricted to the smaller set W c W'. Thus, 'ex O n = 

{ I l i  ~ O~X}. Hence, 91ex(T') is isomorphic to 91~'x(T) and so W" is isomorphic 
to W'. �9 

Theorem 3. Let W =  S i x ' "  XSk be a finite Cartesian product of 
simplexes; then the canonical theory associated to W is state complete. 

We shall first need a f e w  lemmas. 

Lemma 3. Let W be an n-simplex; then the canonical theory associated 
to W is state complete. 

Proof. This is essentially proved in Svetlichny (1982, Theorem 3). Each 
extreme instrument is a coarsening of the single maximal extreme instrument 
given by the set of  barycentric coordinates of W. One immediately has that 
W ' =  W. �9 

Lernma 4. Let C and D be finite-dimensional, compact, convex sets. 
Any frequency functional on C x D is of the form f +  g, where f is a 
frequency functional on C and g is a frequency functional on D. 
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Proof Let h be any frequency functional on C x D, and (c, d), (c', d ' )  
any two points. Then (c, d') and (c', d) are also points of  C x D and one has 

~(c, d) +1(c', d') = ~(c', d) +~(c, d') 

By affinity of  h one now deduces 

h(c, d)+ h(c', d') = h(c', d)+ h(c, d') 

By compactness of  C x D there is a point (c', d') at which h takes its 
minimum; thus, defining f (  c) = h( c, d') and g( d) = h( c', d) - h( c', d'), one 
has the desired representation. �9 

Lemma 5 Let C and D be finite-dimensional, compact,  convex sets. 
The extreme instrument quasimanual of the canonical theory associated to 
C x D is the disjoint union of the extreme instrument quasimanuals of  the 
canonical theories associated to each one of  the factors. 

Proof Let ( h l , . . . , h n ) = ( f ~ + g l , . . . , f , + g n )  be an extreme instru- 
ment of  the theory associated to C • D. One has that for all (c, d), Y~i f ( c )  = 
1-~,igi(d).  Thus, one has that Y~ifi(c)=u and ~,igi(d)=v for some 
positive u and v with u + v = 1. Suppose now that 0 < u, v < 1. Then there 
is a positive number  p such that each of the (1 + p ) f ,  (1 -pu/v)g~, (1 - p ) f ,  
(1 + pu/v)g~, 

h + = (1 + p ) f  + (1 -pu /v )g ,  

h~- = (1 - p ) f  + (1 +pu/v)gi 

is a frequency functional. One now has that h = h + / 2 +  h-/2 and thus is 
not extreme. Thus either each f or each g~ is zero. �9 

Proof of Theorem 3. The case of  a single simplex follows from Lemma 
3; the general case now follows by induction on the number  of  factors from 
Lemma 5. �9 
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